
Essential Algorithms and Data Structures
for Computational Design in Grasshopper

First Edition

Rajaa Issa
Robert McNeel & Associates

Essential Algorithms and Data Structures for Computational Design, First edition, by Robert
McNeel & Associates, 2020 is licensed under a Creative Commons Attribution-Share Alike
3.0 United States License.

1

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

Table of Contents
Preface 4

Chapter One: Algorithms and Data 5

1_1: Algorithmic design 5

1_2: Algorithms parts 5

1_3: Designing algorithms: the 4-step process 7

1_4: Data 12

1_5: Data sources 12

1_6: Data types 13

1_7: Processing data 16

1_7_1: Numeric operations 16

1_7_2: Logical operations 17

1_7_3: Data analysis 18

1_7_4: Sorting 18

1_7_5: Selection 19

1_7_6: Mapping 19

1_8: Pitfalls of algorithmic design 23

1_8_1: Invalid or wrong type input 23

1_8_2: Incorrect input 24

1_8_3: Incorrect order of operation 24

1_8_4: Mismatched data structures 25

1_8_5: Long processing time 26

1_8_6: Poor organization 26

1_9: Algorithms tutorials 26

1_9_1: Unioned circles tutorial 26

1_9_2: Sphere with bounds tutorial 28

1_9_3: Data operations tutorial 29

1_9_4: Pitfalls tutorial 31

Chapter Two: Introduction to Data Structures 33

2_1: Overview 33

2_2: Generating lists 34

2_3: List operations 35

2_4: List matching 40

2_5: Data structures tutorials 44

2_5_1: Variable thickness pipe tutorial 44

2_5_2: Custom matching tutorial 46

2_5_3: Simple truss tutorial 47

2_5_4: Pearl necklace tutorial 49

Chapter Three: Advanced Data Structures 52

2

3_1: The Grasshopper data structure 52

3_1_1 Introduction 52

3_1_2 Processing data trees 52

3_1_3 Data tree notation 54

3_2: Generating trees 56

3_3: Tree matching 58

3_4: Traversing trees 61

3_5: Basic tree operations 63

5_3_1: Viewing the tree structure 63

3_5_2: List operations on trees 63

5_3_3: Grafting from lists to a trees 65

5_3_4: Flattening from trees to lists 66

5_3_5: Combining data streams 67

5_3_6: Flipping the data structure 67

5_3_7: Simplifying the data structure 69

3_6: Advanced tree operations 72

3_6_1: Relative items 72

3_6_2: Split trees 77

3_6_3: Path mapper 82

3_7: Advanced data structures tutorials 88

3_7_1: Sloped roof tutorial 88

3_7_2: Diagonal triangles tutorial 91

3_7_3: Zigzag tutorial 92

3_7_4: Weaving tutorial 92

3

Preface
The Essential Algorithms and Data Structures for Computational Design introduces
effective methodologies to develop complex 3D modeling algorithms using Grasshopper. It
also covers extensively the data structure adopted by Grasshopper and its core
organization and management tools.

The material is directed towards designers who are interested in parametric design and
have little or no background in programming. All concepts are explained visually using
Grasshopper® (GH), the generative modeling environment for Rhinoceros® (Rhino). This
book is not intended as a beginners guide to Grasshopper in terms of user interface or
tools. Basic knowledge of the interface and workflow is assumed. For more resources and
getting started guides, go to the learn section in www.rhino3d.com.

The content is divided into three chapters. Chapter 1 discusses algorithms and data. It
introduces a methodology to help create and manage parametric solutions. It also
introduces basic data concepts such as data types, sources and common ways to process
them. Chapter 2 reviews basic data structures in Grasshopper. That includes single items
and lists. Chapter 3 includes an in-depth review of the tree data structure in Grasshopper
and practical applications in design problems. All Grasshopper examples and tutorials are
written with Rhinoceros version 6 and are included in the download.

Rajaa Issa
Robert McNeel & Associates

4

http://www.rhino3d.com/

Chapter One: Algorithms and Data

Algorithms and data are the two essential parts of any parametric design solution, but writing
algorithms is not trivial and requires a skill that does not come easy to intuitive designers. The
algorithmic design process is highly logical and requires explicit statement of the design intention
and the steps to achieve them. This chapter introduces a methodology to help creative designers
develop new algorithmic solutions. All algorithms involve manipulating data and hence Algorithms
and Data are tightly connected. We will introduce the basic concepts of data types and processes.

1_1: Algorithmic design

We can define algorithmic design as a design method where the output is achieved through well-
defined steps. In that sense, many human activities are algorithmic. Take, for example, baking a
cake. You get the cake (output) by using a recipe (well-defined steps). Any change in the
ingredients (input) or the baking process results in a different cake. We will analyze the parts of
typical algorithms, and identify a strategy to build algorithmic solutions from scratch.

Regardless of its complexity, all algorithmic solutions have 3 building blocks: input, key process,
and output. Note that the key process may require additional input and processes.

Figure (1): The building blocks of algorithmic solutions

Throughout this text, we will organize and label the solutions to identify the three blocks clearly. We
will also use consistent color coding to visually distinguish between the parts. This will help us
become more comfortable with reading algorithms and quickly identify input, key processing steps,
and properly collect and display output. Visual cues are important to develop fluency in algorithmic
thinking.

In general, reading existing algorithmic solutions is relatively easy, but building new ones from
scratch is much harder and require a new set of skills. While it is useful to know how to read and
modify existing solutions, it is essential to develop algorithmic design skills to build new solutions
from scratch.

1_2: Algorithms parts
In Grasshopper, a solution flows from left to right. At the far left are input values and parameters,
and the far right has the output. In between are one or more key processes, and sometimes
additional input and output. Let’s take a simple example to help identify the three parts of any

5

algorithm (input, key process, output). The simple addition algorithm includes two numbers (input),
the sum (output) and one key process that takes the numbers and gives the result. We will purple
for the input, maroon for the key processes and white for the output. We will also group and label
the different parts and adhere to organizing the Grasshopper solutions from left to right.

Example 1-2-1:
Algorithm to add 2 numbers

Algorithms may involve intermediate processes. For example, suppose we need to create a circle
(output) using a center and a radius (input). Notice that the input is not sufficient because we do not
know the plane on which the circle should be created. In this case, we need to generate additional
information, namely the plane of the circle. We will call this an intermediate process and use brown
color to label it.

Example 1-2-2:
Algorithm to create a circle on the XY-Plane from a center and a radius

Some solutions are not written with styles and hence are hard to read and build on.It is very
important that you take the time to organize and label your solutions to make it easier to
understand, debug and use by others.

Tutorial 1-2-3: Read existing algorithm
Given the following definition, write a description of what the algorithm does, identify input, the main process(s) and

output, then label and color-code all the parts. Re-write the solution to make it more readable.

Solution

6

In order to figure out what the algorithm is meant to do, we need to group the input on the left side, and collect the
output on the right side, then organize the processes in the order or execution. We then step through the solution
from left to right to deduce what it does. We can examine and preview the output in each step.

The example of the tutorial is meant to create a circle that is twice as large as another circle that goes through
three given points. One of the points is constructed out of its 3 coordinates.

1_3: Designing algorithms: the 4-step process

Before we generalize a method to design algorithms, let’s examine an algorithm we commonly use
in real life such as baking a cake. If you already have a recipe for a cake, you simply get the
recommended ingredients, mix them, pour in a pan, put in preheated oven for a certain amount of
time, then serve. If the recipe is well documented, then it is relatively straightforward to use. As you
become more proficient in baking cakes, you may start to modify the recipe. Perhaps add new
ingredients (chocolate or nuts) or use different tools (cupcake container).

Figure (2): Steps to follow existing recipe

When designers write algorithms, they typically try to search for existing solutions and modify to fit
their purposes. While this is a good entry point, using existing solutions can be frustrating and time-
consuming. Also, existing solutions have their own flavor and that may influence design decisions
and limit creativity. If designers have unique problems, and they often do, they have no choice but
to create new solutions from scratch; albeit a much harder endeavor.

Back to our example, the task of baking a cake is much harder if you don’t have a recipe to follow
and have not baked one before. You will have to guess the ingredients and the process. You will
likely end up with bad results in the first few attempts, until you figure it out! In general, when you
create a new recipe, you have to follow the process in reverse. You start with an image of the
desired cake, you then guess the ingredients, tools and steps. Your thinking goes along the
following lines:

7

- The cake needs to be baked, so I need an oven and time,
- What goes in the oven is a cake batter held by a container,
- The batter is a mix of ingredients

Figure (3): Steps to invent a new recipe from scratch

We can use a similar methodology to design parametric algorithm from scratch. Keep in mind that
creating new algorithms is a “skill” and it requires patience, practice and time to develop.

Algorithmic thinking in 3D modeling vs parametric design
3D modeling involves certain level of algorithmic thinking, but it has many implicit steps and data.
For example designing a mass model using a 3D modeler may involve the following steps:

1- Think about the output (e.g. a mass out of few intersecting boxes)
2- Identify a command or series of commands to achieve the output (e.g. run Box command few
times, Move, Scale or Rotate one or more boxes, then BooleanUnion the geometry).

At that point, you are done!

Data such as the base point for your initial box, width, height, scale factor, move direction, rotation
angle, etc. are requested by the commands, and the designer does not need to prepare ahead of
time. Also, the final output (the boolean mass) becomes directly available and visible as an object
in your document.

Figure(4): Interactive 3D modeling to create and manipulate geometry uses visual widgets and guides

Algorithmic solutions are not interactive and require explicit articulation of data and processes. In
the box example, you need to define the box orientation and dimensions. When copy, you need a
vector and when rotate you need to define the plane and angle or rotation.

8

Figure(5): Algorithmic solutions involve explicit definition of geometry, vectors and transformations

Designing algorithms
Designing algorithms requires knowledge in geometry, mathematics and programming. Knowledge
in geometry and mathematics is covered in the Essential Mathematics for Computational
Design1. As for programming skills, it takes time and practice to build the ability to formulate design
intentions into logical steps to process and manage geometric data. To help get started, it is useful
to think of any algorithm as a 4-step process as in the following:

1- Clearly identify the desired outcome Output

2- Identify key steps to reach the outcome Key processes

3- Examine initial data and parameters Input

4- Define intermediate steps to generate missing data Intermediate input + processes

Thinking in terms of these 4 steps is key to developing the skill of algorithmic design. We will start
with simple examples to illustrate the methodology, and gradually apply on more complex
examples.

Example 1-3-1: Add two numbers
Use the 4-Step process to write an algorithm to add two numbers

Step 1: Output :
The sum of the 2 numbers.
Use a Panel to collect the
sum.

1Issa, Essential Mathematics for Computational Design, 4th edition, 2019. Free download of the PDF and
examples: https://www.rhino3d.com/download/rhino/6/essentialmathematics

9

https://www.rhino3d.com/download/rhino/6/essentialmathematics

Step 2: Key process :
Addition.
Use the Addition
component that takes 2
numbers and gives the sum.

Step 3: Input :
2 numbers.
Use a Panel to hold the
values of input numbers.

Example 1-3-2: Create a circle
Use the 4-Step process to create a circle from a given center and radius

Step 1: Output :
Circle.
Use the Circle parameter to
collect the output.

Step 2: Key process :
Identify a key process that
generates a circle from a
radius.
Use the Circle component in
Grasshopper.

Step 3: Input :
Use the given input (center
and radius). Feed the radius
to the Circle component.

Step 4: Intermediate
process :
The circle needs the center,
and also the plane on which
the circle is located. Assume
the circle is on a plane
parallel to the XY-Plane and
use the circle center as the

10

origin of the plane.

Example 1-3-3: Create a line
Use the 4-Step process to create an algorithm to generate a line from 2 points. One point is referenced from Rhino, and
the other is created using three coordinates (x=1, y=0.5 and z=3).

Step 1: Output :
The line geometry. Use the
Geometry parameter to
collect the output.

Step 2: Key process:
Identify a key process that
generates a line from 2
points. Use the Line
component in Grasshopper.

Step 3: Input :
Use the given input
(referenced point and 3
coordinates). Feed one point
to one of the ends of the line.

Step 4: Intermediate
process :
Before we can use the
coordinates as a point, we
need to construct a point.

In more complex algorithms, we will need to analyze the problems, investigate possible solutions
and break them down to pieces whenever possible to make it more manageable and readable. We

11

will continue to use the 4-step process and other techniques to solve more complex algorithms
throughout the book.

1_4: Data

Data is information stored in a computer and processed by a program. Data can be collected from
different sources, it has many types and is stored in well defined structures so that it can be used
efficiently. While there are commonalities when it comes to data across all scripting languages,
there are also some differences. This book explores data and data structures specific to
Grasshopper.

1_5: Data sources

In Grasshopper, there are three main ways to supply data to processes (or what is called
components): internal, referenced and external.

Data sources: in Grasshopper

1- Internally set data
Data can be set inside any instance of a parameter. Once set, it remains constant, unless
manually changed or overridden by external input. This is a good way to use when you do not
generally need to change the data after it is set (constant). Data is stored inside the GH file.

2- Referenced data
Data can be referenced from Rhino or some external document. For example, you can
reference a point created in a Rhino document. When you move the point in Rhino, its
reference in Grasshopper updates as well. Grasshopper files are saved separately from Rhino
files, and hence if the GH file has referenced data, the Rhino file needs to be saved and
passed along with the GH file to avoid any loss of data.

3- Externally supplied data
Data can be supplied from previous processes. This method is best suited for dynamic data or
data controlled parametrically. Externally supplied data to a parameter takes precedent over
the internal or referenced values (when both exist).

12

1_6: Data types

All programming languages identify the kind of data used in terms of the values that can be
assigned to and the operations and processes it can participate in. There are common data types
such as Integer, Number, Text, Bool (true or false), and others. Grasshopper lists those under the
Params > Primitives tab.

Figure (6): Examples of primitive data types common to all programming languages

Grasshopper supports geometry types that are useful in the context of 3D modeling such as Point
(3 numbers for coordinates), Line (2 points), NURBS Curve, NURBS Surface, Brep, and others.
All geometry types are included under Param> Geometry tab in GH.

Figure (7): Examples of geometry data types

13

There are other mathematics types that designers do not usually use in 3D modeling, but are very
common in parametric design such as Domains, Vectors, Planes, and Transformation Matrices.
GH provides a rich set of tools to help create, analyze and use these types. To fully understand the
mathematical as well as geometry types such as NURBS curves and surfaces, you can refer to the
Essential Mathematics for Computational Design book by the author.

Figure (8): Examples of data types common in computer graphics

The parameters in GH can be used to convert data from one type to another (cast). For example if
you need to turn a text into a number, you can feed your text into a Number parameter. If the text
cannot be converted, you’ll get an error.

Figure (9): Data conversion (casting) inside parameters in Grasshopper

Grasshopper components internally convert input to suitable types when possible. For example, if
you feed a “text” to Addition component, GH tries to read the text as a number. If a component
can process more than one type, it uses the input type without conversion. For example, equality in
an expression can compare text as well as numbers. In such case, make sure you use the
intended type to avoid confusion.

14

Figure (10): Some operations can be performed on multiple types. Cast to the intended type especially if the component
is capable of processing multiple types (such as Expression in GH)

It is worth noting that sometimes GH components simply ignore invalid input (null or wrong type). In
such cases, you are likely to end up with an unexpected result and hard to find the bug. It is very
important to verify the output from each component before using it.

Figure (11): Invalid input is ignored and a default value is used. For example a number inside a Panel component can be
interpreted as a text and hence become invalid input to an Addition component

1_7: Processing data
Algorithmic designs use many data operations and processes. In the context of this book, we will
focus on five categories: numetric and logical operations, analysis, sorting and selection.

1_7_1: Numeric operations
That include operations such as arithmetic, trigonometry, polynomials and complex numbers. GH
has a rich set of numeric operations, and they are mostly found under the Math tab. There are two
main ways to perform operations in GH. First by using designated components for specific
operations such as Addition, Subtraction and Multiplication.

15

Figure (12): Examples of numeric operations components in GH

Second, use an Expression component where you can combine multiple operations and perform a
rich set of math and trigonometry operations, all in one expression.

Figure (13): Expression component in GH can be used to perform multiple operations

The Expression component is more robust and readable when you have multiple operations.

Figure (14): When a chain of operations are involved, using the Expression component is easier to maintain

Input to Expressions can be treated as text depending on the context.

Figure (15): Expression can process and format text

It is worth mentioning that most numeric input to components allow writing an expression to modify
the input inline. For example, the Range component has N (number of steps) input. If you right
mouse click on “N”, you can set an expression. You always use “x” to represent the supplied input
regardless of the name.

16

Figure (16): Expression can be set inside the input parameter. Variable “x” refers to the supplied input value

1_7_2: Logical operations
Main logical operations in GH include equalities, sets and logical operations.

Figure (17): GH has multiple components to perform Logical operations

Logical operations are used to create conditional flow of data. For example, if you like to draw a
sphere only when the radius is between two values, then you need to create a logic that blocks the
radius when it is not within your limits.

Figure (18): Data flow control using logical operations

17

1_7_3: Data analysis
There are many tools in GH to examine and preview data. Panel is used to show the full details of
the data and its structure, while the Parameter Viewer shows the data structure only. Other
analysis components include Quick Graph that plots data in a graph, and Bounds to find the limits
in a given set of numbers (the min and max values in the set).

Figure (19): Some of the ways to analyze data in Grasshopper

1_7_4: Sorting
GH has designated components to sort numeric and geometry data. The Sort List component can
sort a list of numeric keys. It can sort a list of numbers in ascending order or reverse the order. You
can also use the Sort List component to sort geometry by some numeric keys, for example sort
curves by length. GH has components designated to sort geometry sets such as Sort Points to
sort points by their coordinates.

Figure (20): Sorting numbers in Grasshopper

1_7_5: Selection
3D modeling allows picking specific or a group of objects interactively, but this is not possible in
algorithmic design. Data is selected in GH based on the location within the data structure, or by a
selection pattern. For example List Item component allows selecting elements based on their
indices.

18

Figure (21): Select items from a list in Grasshopper

The Cull Pattern component allows using some repeated pattern to select a subset of the data.

Figure (22): An example to select every other item in a list

As you can see from the examples, selecting specific items or using cull components yield a subset
of the data, and the rest is thrown away. Many times you only need to isolate a subset to operate
on, then recombine back with the original set. This is possible in GH, but involves more advanced
operations. We will get into the details of these operations when we talk about advanced data
structures in chapter 3.

1_7_6: Mapping
That refers to the linear mapping of a range of numbers where each number in a set is mapped to
exactly one value in the new set. GH has a component to perform linear mapping called ReMap.
You can use it to scale a set of numbers from its original range to a new one. This is useful to scale
your range to a domain that suits your algorithm’s needs and limitations.

19

Figure (23): An example of linear remapping of numbers in Grasshopper

Converting data involves mapping. For example, you may need to convert an angle unit from
degrees to radians (GH components accept angles in radians only).

Figure (24): Convert angles from degrees to radians

As you know, parametric curves have “domains” (the range of parameters that evaluate to points
on the curve). For example, if the domain of a given curve is between 12.5 to 51.3, evaluating the
curve at 12.5 gives the point at the start of the curve. Many times you need to evaluate multiple
curves using consistent parameters. Reparameterizing the domain of curves to some unified range
helps solve this problem. One common domain to use is “0 To 1”. At the input of each curve in any
GH component, there is the option to Reparameterize which resets the domain of the curve to be
“0 to 1”.

Figure (25): Normalize the domain of curves (set to 0-1). Use Reparameterize input flag in Grasshopper

20

1-7-1: Flow control tutorial
What is the purpose of the following algorithm? Notate and color code to describe the purpose of each part.

Analyze the algorithm

The algorithm has an output that is a sphere, a radius input and some conditional logic to process the radius.

Notate and color-code the solution

From testing the output and following the steps of the solution it becomes apparent that the intention is to make
sure that the radius of the sphere cannot be less than 1 unit.
Test with radius > 1

Test with radius < 1

1-7-2: Data processing tutorial
Given a list of point coordinates, do the following:
1- Analyze the list to understand the data.
3- Write an algorithm to use the input to construct a list of type Point with coordinates mapped to a domain between 3
and 9.

21

Note that the input list is organized so that the first 3 numbers refer to the x,y,z of the first point, the second 3 numbers
belong to the second point and so on.

Algorithm analysis

There is a list of 51 numbers (3
coordinates for each point implies the
list includes 17 points)

Using a QuickGraph, we can see that
the range of values are between 2.60
and 15.89. We can also see that the
values are distributed randomly.

One other input is the target domain:

Use the 4-step process to solve the algorithms

Output
List of points

Key Process #1 Remap Coordinates:
Map the coordinates list from its current
domain to a new domain 3 to 9
Use ReMap component

Intermediate processes #1
The input domain is missing and can be
extracted using Bounds component

Key Process #2 Construct Points:
Construct points from coordinates
Use Construct Point (Pt) component

22

Intermediate processes #2
Extract all X coordinates as one list, Y
in another and Z in the third. Use Cull
Pattern component with appropriate
pattern to extract each coordinate as a
separate list.

The input to Cull is the remapped
points from process #1

Putting it all together

1_8: Pitfalls of algorithmic design
Writing elegant algorithms that are efficient and easy to read and debug is hard. We explained in
this chapter how to write algorithms with style using color-coding and labeling. We also articulated
a 4-step process to help develop algorithms. Following these guides help minimize bugs and
improve the readability of the scripts. We will list a few of the common issues that lead to incorrect
or unintended result.

1_8_1: Invalid or wrong type input
If the input is of the wrong type or is invalid, GH changes the color of components to red or orange
to indicate an error warning, with feedback about what the issue might be. This is helpful, but
sometimes faulty input goes unnoticed if the components assign a default value, or calculate an
alternative value to replace the input, that is not what was intended. It is a good practice to always
double check the input (hook to a panel or parameter viewer and label the input). To avoid using
wrong types, it is advisable to convert to the intended type to ensure accuracy.

Figure (26): Error resulting from wrong input type

23

1_8_2: Incorrect input
Input is prone to unintended change via intermediate processes or when multiple users have
writing access to the script. It is very useful to preview and verify all key input and output. The
Panel component is very versatile and can help check all types of values. Also you can set up
guarding logic against out of range values or to trap undesired values.

Figure (27): Error resulting from incorrect input. Cannot assume curve domain is 0-1 and use 0.5 to evaluate the
midpoint.

Figure (28): Example of a robust solution to evaluate the midpoint of a curve

1_8_3: Incorrect order of operation
You should try to organize your solutions horizontally or vertically to clearly see the sequence of
operations. You should also check the output from each step to make sure it is as expected before
continuing on your code. There are also some techniques that help consolidate the script, for
example use Expression when multiple numeric and math operations are involved. The following
highlights some unfavorable organization.

24

Figure (29): Easy to confuse input to operations with poor organization

The following shows how to rewrite the same code to make it less error prone.

Figure (30): Best practices to align input with processes, or use Expressions

1_8_4: Mismatched data structures
Mismatched data structures as input to the same process or component is particularly tricky to
guard against in GH, and has the potential to spiral the solution out of memory. It is essential to test
the data structure of all input (except trivial ones) before feeding into any component. It is also
important to examine desired matching under different scenarios (data matching will be explained
at length later).

Figure (31): Mismatched data structures of input can cause errors in the output

25

1_8_5: Long processing time
Some algorithms are time consuming, and you simply have to wait for it to process, but there are
ways to minimize the wait when it is unnecessary. For example, at the early cycles of development,
you should try to use a smaller set of data to test your solution with before committing the time to
process the full set of data. It is also a good practice to break the solution into stages when
possible, so you can isolate and disable the time consuming parts. Also, it is often possible to
rewrite your solution to be more optimized and consume less time. Use the GH Profiler to test
processing time. When a solution takes far too long to process or crashes, you should do the
following: before you reopen the solution, disable it, and disconnect the input that caused the
crash.

Figure (32): Grasshopper Profiler widget help observe processing time

1_8_6: Poor organization
Poorly organized definitions are not easy to debug, understand, reuse or modify. We can’t stress
enough the importance of writing your definitions with styles, even if it costs extra time to start with.
You should always color code, label everything, give meaningful names to variables, break
repeated operations into modules and preview your input and output.

Figure (33): Poor organization in visual programming make the code hard to read or debug

1_9: Algorithms tutorials
1_9_1: Unioned circles tutorial
Use the 4-step process to design an algorithm that unions 2 circles, given the following: both are located on the XY-
Plane. The first circle (Cir1) has a center (C1) = (2,2,2) and radius (R1) = some random number between 3 and 6. The
second circle (Cir2) has a center (C2) is shifted to the right of (Cir1) by an amount equal to R1 along positive X-Axis. R2
= R1 * 1.2

26

Analyze the question and the flow of the solution

Output

Curve for the region union

Key Proces: union of 2 circles

Use the Region Union component that
takes curves and a plane

Input to the region union

Identify the input needed and use given
input when relevant.

The plane for region union has been
given. The 2 circles need their own
plane and radius. The center of the
plane is the center of the circle.

27

Intermediate process to generate the
center and plane of the 1st circle

Construct a center from the given
coordinates. Create a plane using
Plane Origin component and use the
constructed center and XY-Plane

The radius is from a random number
between 3 and 6. Use Random
component to create the radius

Intermediate process to generate the
center and plane of the 2nd circle

Calculate the 2nd circle plane by
moving the first circle plane along the x-
axis by an amount = first radius

GCalculate the 2nd circle radius by
multiplying the first radius by 1.2

Put it all together

1_9_2: Sphere with bounds tutorial
Use the 4-step process to draw a sphere with a radius between 2 and 6. If input is less than 2, then set the radius to 2,
and if input radius is greater than 6, set the radius to 6. Use a number slider to input the radius and set between 0 and 10
to test.
Make sure your solution is well organized, color-coded and labeled properly

28

Use the 4-step process to solve the algorithms

Output
The sphere as geometry

Key Process: create a sphere
Map the coordinates list from its current
domain to a new domain 3 to 9
Use ReMap component

Input
1- The radius parameter (0 - 10)
2- The bounds of the radius are 2 & 6

Intermediate processes #1
Construct a selection logic of radii and pattern. The radii is a list of the values from the slider, min and max.
The list of pattern is generated to select the correct radius value

Intermediate processes #2
The selection logic checks if the radius from the slider is between the bounds, then set it to be selected, if less,
then select the min, and if more select the max.

1_9_3: Data operations tutorial
Given the numbers embedded in the Number parameter below:
1- Analyze input in terms of bounds and distribution
2- View the data and how it is structured
3- Extract even numbers
4- Sort numbers descending
5- Remap sorted numbers to (100 to 200)

29

Solution

1- Analyze the input bounds and
distribution

Use the QuickGraph to show that the
set of numbers are between 3 and 98
and are distributed randomly.

2- Analyze the input data structure
and values

Use the Panel and Parameter Viewer
to show there are 16 elements
organized in a list

3- Extract Even numbers

Create the logic to test if a number is
even (divisible by 2 without a
remainder) and use Dispatch to extract
even numbers

4- Sort numbers descending

The Sort List component sorts
numbers in ascending order. Use
Reverse List component to further
process the list to order descending

30

5- Remap to 100-200

Check the input range and use Remap
component to scale data to be between
100-200

1_9_4: Pitfalls tutorial
Analyze what the following algorithm is intended to do, identify the errors that are preventing it from working as intended,
then rewrite to fix the errors. Organize to reflect the algorithm flow, label and color-code.

Solution

Mark the errors:

Fix the errors and rewrite the solution with labels:

31

32

Chapter Two: Introduction to Data Structures

All algorithms involve processing input data to generate a new set of data as output. Data is stored
in well-defined structures to help access and manipulate efficiently. Understanding these structures
is the key for successful algorithmic designs. This chapter includes an in-depth review of the basic
data structures in Grasshopper.

2_1: Overview

Grasshopper has three distinct data structures: single item, list of items and tree of items. GH
components execute differently based on input data structures, and hence it is essential to be fully
aware of the data structure before using. There are tools in GH to help identify the data structure.
Those are Panel and Param Viewer.

Figure (34): Data structures in Grasshopper

Processes in GH execute differently based on the data structure. For example, the Mass Addition
component adds all the numbers in a list and produces a single number, but when operating on a
tree, it produces a list of numbers representing the sum of each branch.

Figure (35): Components execute differently based on the data structures. Result of adding numbers from Figure(34)

The wires connecting the data with components in GH offer additional visual reference to the data
structure. The wire from a single item is a simple line, while the wire connecting a list is drawn as a

33

double line. A wire output from a tree data structure is a dashed double line. This is very useful to
quickly identify the structure of your data.

Display the data structure Example

Item: single branch with single item
Wire display: single line

List: single branch with multiple items
Wire display: double line

Tree: multiple branches with any number of items per branch
Wire display: double dashed line

2_2: Generating lists

There are many ways to generate lists of data in GH. So far we have seen how to directly embed a
list of values inside a parameter or a panel (with multiline data). There are also special components
to generate lists. For example, to generate a list of numbers, there are three key components:
Range, Series and Random. The Range component creates equally spaced range of numbers
between a min and max values (called domain) and a number of steps (the number of values in the
resulting list is equal to the number of steps plus one).

Figure (36): Generate a list of 8 numbers using the Range component in Grasshopper

The Series component also creates an equally spaced list of numbers, but here you set the
starting number, step size and number of elements.

34

Figure (37): Generate a list of 7 numbers using the Series component in Grasshopper

The Random component is used to create random numbers using a domain and a number of
elements. If you use the same seed, then you always get the same set of random numbers.

Figure (38): Generate a list of numbers using the Random component in Grasshopper

Lists can be the output of some components such as Divide curve (the output includes lists of
points, tangents and parameters). Use the Panel component to preview the values in a list and
Parameter Viewer to examine the data structures.

Figure (39): Divide Curve takes a single input (curve) and generate lists of output

2_3: List operations

GH offers an extensive list of components for list operations and list management. We will review a
few of the most commonly used ones.
You can check the length of a list using the List Length component, and access items at specific
indices using the List Item component.

35

Figure (40): Examples of list operations in Grasshopper

Lists can be reversed using the Reverse List component, and sorted using the Sort List
component.

Figure (41): Lists can be reversed or sorted using designated components in Grasshopper

Components such as Cull Patterns and Dispatch allow selecting a subset of the list, or splitting
the list based on a pattern.These components are very commonly used to control data flow and
select a subset of the data.

36

Figure (42): Cull part of a list using components such as Cull Pattern and Dispatch

The Shift List component allows shifting a list by any number of steps. That helps align multiple
lists to match in a particular order.

Figure (43): Shift operation in Grasshopper

The Subset component is another example to select part of a list based on a range of indices.

Figure (44): Example to select a subset of the list using a range of indices

37

2_3_1 List operations tutorial
Use the two given lists of points to generate the following images.

Output image Grasshopper solution

38

39

2_4: List matching

When the input is a single item or has equal number of elements in a simple list, it is easy to
imagine how the data is matched. The matching is based on corresponding indices. Let’s use the
Addition component to examine list matching in GH.

Figure (45): Matching equal length lists is based on matching corresponding indices

There are times when input has variable length lists. In this case, GH reuses the last item on the
shorter list and matches it with the next items in the longer list.

Figure (46): The default list matching in Grasshopper reuses the last element of the shorter list

Grasshopper offers alternative ways of data matching: Long, Short and Cross reference that the
user can force to use. The Long matching is the same as the default matching. That is the last
element of the shorter list is repeated to create a matching length.

40

Figure (47): Long list matching is the default matching mode in Grasshopper

The Short list matching truncates the long list to match the length of the short list. All additional
elements are ignored and the resulting list has a length that matches the shorter list.

Figure (48): Short matching of lists omits additional values in longer lists

The Cross Reference matches the first list with each of the elements in the second list. The
resulting list has a length equal to the multiplication product of the length of input lists. Cross
reference is useful when trying to produce all possible combinations of input data. The order of
input affects the order of the result as shown in Figure (49).

41

Figure (49): Cross reference matching creates longer lists to account for all possible permutations

If none of the matching methods produce the desired result, you can explicitly adjust the lists to
match in length based on your requirements. For example, if you like to repeat the shorter list until
it matches the length of the longer list, then you’ll need to create the logic to achieve that as in the
following example.

Figure (50): Need to create custom script to generate custom matching

42

2_4_1 List matching tutorial
Use the input list of 6 numbers to construct the points in the image

Solution

Output:
A list of 6x6x6 = 216 points
constructed from a list of X, Y, Z
coordinates

Key process:
Use the Construct Point
component to generate the list of
points

Input:
Examine input using the
Parameter Viewer and Panel
components.

The given list has 6 points
representing each coordinate
along each axis

43

Intermediate process:
Need to find all possible
permutations for the coordinates
to create the cube of 216 points
along all 3 axes

Use Cross Reference matching
to generate lists of coordinates
that have all possible
permutations

Put it all together

2_5: Data structures tutorials
2_5_1: Variable thickness pipe tutorial
Create a surface similar to the one in the image with thickness that changes in 10 locations random along the curve.
Thickness variations are random between 1 and 3.

Algorithm analysis

To figure out an algorithm, it is
useful to think in terms of 3D
modeling. There are 2 ways to
generate this surface:

1- Create circles along the line at
random locations with random
radius, then loft the result.
2- Figure out the profile curve
and revolve along the line

The process goes like this:

44

1- Divide the line at random
locations
2- Orient to the planes at
locations (line normal to planes)
3- Create the circles (or points
for the profile curve)
4- Select the circles (in order) to
Loft (or Interpolate Curve then
Revolve)

Solution steps

Output:
The surface

Key process:
Use the Loft component to
generate the surface

Input:
Line,
Number of intervals and
Thickness range

Intermediate process #1:
The Loft is created from a list of
circles. Use the Circle
component that takes centers,
normals and radii lists.
We can use the default Loft
options.

Intermediate process #2:
List of radii is created randomly.
Use the Random component and
the input thickness range.

Intermediate process #3:
Evaluate the line at random
intervals. Use the Evaluate
Curve component to extract
points and normals, and use the
Random component to generate
the parameters along the curve.

45

Problem: the random parameters
are not ordered and hence
produce unordered points. Use
the Sort List component to order
the parameters before feeding
into the Evaluate Curve.

Put it all together

2_5_2: Custom matching tutorial
Explain the default GH list matching in the following example. Compare the result with "Shortest List" matching, then try
to create a custom matching that repeats the pattern of the shorter lists. E.g. [1,2] becomes [1,2,1,2,...] until it matches
the length of the longer list.

Solution

Construct default GH
matching:
To test the matching, fill the lists
as coordinates to a Construct
Point component and observe
the result.

46

Analysis of GH default
matching:
The last element of shorter lists is
repeated until all lists have the
same length, then elements are
matched by indices

Shortest List matching:
Omit additional values in longer
lists so that the length of all lists
equasl the length of the shortest
list.

Custom matching:
Use the Repeat component to repeat the elements until match the length of the longest list.

2_5_3: Simple truss tutorial
Create simple truss as in the image. Use given baseline, height,number of runs and joint radius.

Solution

Algorithm analysis

Identify the desired output for
the truss

47

Define the input
L= line geometry on xy-plane
H= height
R= number of runs
J= joint radius

Divide curve by 2*R

Move every other point in the
Z direction by height

Create 3 sets of ordered
points for the bottom beams,
top beams and middle beams,
then connect each of the 3
sets with a polyline

Algorithm implementation in Grasshopper

Output:
There are 2 outputs, the
beams as curves (polylines)
and joints as spheres
(surfaces)

Key processes:
Need to create the polylines
for the top, middle, and
bottom beams. Use the
Polyline component with
relevant set of points for each.

Use the Sphere component to
create joints. Use middle
points and joint radius as
input.

Given input:
Four given input: line, number
of runs, height and joint radius

48

Intermediate process #1
Divide the curve with twice the
number of runs. Use Divide
Curve component and
Multiply the number of runs

Intermediate process #2
To create top points, select
every other point from the list
of all divide points, then move
vertically by the height
amount.
Use Cull Pattern component
to select points and Move
component to shift vertically

Intermediate process #3
To create bottom points,
select every other point, in the
invert pattern used to select
top points.
Use Cull Pattern component
to select points (set invert flag
for the pattern input)

Intermediate process #4
To create middle points,
Weave the top and bottom
points.

Put it all together

49

2_5_4: Pearl necklace tutorial
Create a necklace with one big pearl in the middle, and gradually smaller size pearls towards the ends as in the image.
Make number of pearls parametric between 15-25.

Algorithm analysis

The workflow to create the
necklace follows these general
lines:
1- Divide the curve into segments
of variable distances (widest in
the middle and narrow towards
the ends).
2- Find midpoints for each
segment and its length
3- Create spheres at centers
using half the length as radius

Solution steps

Output:
The surfaces

Key process:
Use the Sphere component to
generate the surfaces

Given input:
Necklace curve,
Number of pearls as a parameter
(can be changed by the user)

50

Intermediate process #1:
The Range component creates
equal distances. We need to
change to variable distances and
for that we can use the Graph
Mapper component to control the
spacing.

Intermediate process #2:
Since we have normalized
distances from the start of the
curve (parameters are between 0
to 1), we can use the Evaluate
Length component to find the
divide points.

Intermediate process #3:
Generate the segments. Use
Polyline and Explode
components to turn the points
into segments

Center points are calculated at
the middle of the segments. Use
Evaluate Length at mid length

Radii is calculated as half of each
segment length. Use Length and
Division components.

Put it all together

51

Chapter Three: Advanced Data Structures

This chapter is devoted to the advanced data structure in GH, namely the data trees, and different
ways to generate and manage them. The aim is to start to appreciate when and how to use tree
structures, and best practices to effectively use and manipulate them.

3_1: The Grasshopper data structure

3_1_1 Introduction
In programming, there are many data structures to govern how data is stored and accessed. The
most common data structures are variables, arrays, and nested arrays. There are other data
structures that are optimised for specific purposes such as data sorting or mining. In Grasshopper,
there is only one structure to store data, and that is the data tree. Hold on, what about what we
have learned so far: single item and list of items? Well, in GH, those are nothing but simple trees.
A single item is a tree with one branch, that has one element, and a list is a tree with one branch
that has a number of elements. It is actually pretty elegant to be able to fit all data in one unifying
data structure, but at the same time, this requires the user to be aware and vigilant about how their
data structure changes between operations, and how that can affect intended results. This chapter
attempts to demystify the data tree of Grasshopper.

3_1_2 Processing data trees
We used the Panel and Parameter Viewer components to view the data structure. We will use
both extensively to show how data is stored. Let’s start with a single item input. The Parameter
Viewer has two display modes, one with text and one that is graphical. You can see that the single
item input is stored in one branch that has only one item.

Figure (51): Different ways to preview the data structure in Grasshopper

The Parameter Viewer shows each branch address (called “Path”), and the number of elements in
that branch as shown in Figure (52).

52

Figure (52): The Parameter Viewer indicates the path address and the number of elements in each branch

A list of items is typically stored in a tree with one branch. Figure (53). However, the three items
can also be stored in three different branches. Figure (54).

Figure (53): A list is a tree that has one branch with multiple elements

Figure (54): A tree contains any number of branches with any number of elements in each branch

The key to understand Grasshopper data structure is to be able to answer the following question:
What is the significance of storing the 3 numbers in one branch vs 3 branches?
The data structure informs GH components about how to match input values. In other words,
components may process data differently based on their structure. The following example
illustrates how different data structures for the same set of values can affect the result.

53

Figure (55): Organizing same set of value in different data structures affect the output

We will elaborate on data tree matching later, but you can already see that GH components do pay
attention to the data structure and the result can vary considerably based on it. This is one of the
complications inherited in using one unifying data structure in a programming language.

3_1_3 Data tree notation
The first step to understanding data trees is to learn the GH notation of trees. As we have seen
from the examples, trees consist of branches, and each branch holds a number of elements. The
address or path of each branch is represented with integers separated by semicolons and enclosed
in curly brackets. The index of each element is enclosed by square brackets. This diagram shows a
breakdown of the address of elements in trees.

Figure (56): Address of elements include the address of the branch and the index of the element in the branch

Here are a few examples of various trees structures and how they show in the Paramster Viewer
and Panel.

54

Figure (57): Same set of values held in different structures.
Left: 5 trunks (5 trees) with single item in each. Middle: 5 branches out of one trunk (1 tree), and each branch holds a

single item. Right: two trunks (2 trees), the first has 2 branches with the first branching into 3 branches, each holds one
item, the second holds 1 item. The second trunk holds 2 items.

3_1_1 Data tree tutorial:
Construct a tree of numbers using the Number parameter, that look similar to the image when viewed in the Param
Viewer and contains the numbers indicated. Then type in a Panel the full address to the item "1.2" . Note that order of
branches and leaves is always from left to right going clockwise

Solution

The path for“1.2” is: { 0 ; 3 ; 0} [1]
Note: The three branches from the main trunk are set here to 0:1,
0:2, and 0:3. They also could have been 0:0, 0:1 and 0:2. Both are
correct.

55

3_2: Generating trees
There are many ways to generate complex data trees. Some explicit, but mostly as a result of
some processes, and this is why you need to always be aware of the data structures of output
before using it as input downstream. It is possible to enter the data and set the data structure
directly inside any Grasshopper parameter. Once set, it is relatively hard to change and therefore is
best suited for a constant input. The following is an example of how to set data tree directly inside a
parameter.

Figure (58): Set data trees directly inside the parameter

56

There are many components that generate data trees such as Grid and DivideSrf, and others that
combine lists into a tree structure such as Entwine. Also all the components that produce lists can
also create tree if the input is a list. For example, if input more than one curve into the DivideCrv
component, we get a tree of points.

Figure(59): SDivide component takes one input (surface) and outputs a data tree (grid).

All components that generate lists of numbers (such as Range and Series) can also generate
trees when given a list of input.

Figure(60): Entwine component takes any number of lists and combine them into a tree structure.

Perhaps one of the most common cases to generate a tree is when dividing a list of curves to
generate a grid of points. So the input is one list and the output is a tree.

57

Figure(61): Divide component takes any list (curves) and generates a tree structure (grid).

3-2-1 Generating trees tutorial
Given the following list of points, construct a number tree with 3 branches, one for each coordinate.

Solution

Discussion: each input point is a single data item that contains 3 numbers (coordinates). We know we would like to
isolate each coordinate into a separate list, then combine them into one data structure. Hence we need to first
deconstruct input points (use Deconstruct of pDecon component), then combine the lists into one structure (use
Entwine component).

3_3: Tree matching
We explained the Long, Short and Cross matching with lists. Trees follow similar conventions to
expand the shorter branches by repeating the last element to match. If one tree has less branches,
the last branch is repeated. The following illustrates common tree matching cases.

58

Match an item with a tree:

Match a shorter list with a tree
(tree branches longer than the list):

Match a longer list with a tree
(tree branches shorter than the list):

Match 2 trees with same number of branches: Match 2 trees with different number of branches:

59

3_3_1 Tree matching tutorials
Inspect the following 2 number structures, then predict the structure and result of adding them (with default Grasshopper
matching). Verify your answer using Addition components.

Solution

Key solution idea: The two input trees have different number of branches and different number of elements in each
branch. The last branch of the shorter tree is repeated to match the number of branches, then corresponding
branches are matched by repeating the last element of the shorter branch.

60

3_4: Traversing trees
Grasshopper provides components to help extract branches and items from trees. If you have the
path to a branch or to an item, then you can use Branch and Item components. You need to check
the structure of your input so you can supply the correct path.

Figure (62): Select branches from a tree

Figure (63): Select items from a tree

If you know that your structure might change, or you simply do not want to type the path, you can
extract the path using the Param Viewer and List Item components.

61

Figure (64): Example of how to extract data paths dynamically

3_4_1 Traversing trees tutorial
The following tree has 3 branches for each one of the coordinates (x, y, z) of some list of points. Use that tree to
construct a list of these points.

Solution

Key solution idea: We can construct a point list using as input 3 lists representing X, Y and Z values. If we can
isolate the 3 branches of the input tree, then we will be able to feed them to the point construction component.

3_5: Basic tree operations
Basic tree operations are widely used and you will likely need them in most solutions. It is very

62

important to understand what these operations do, and how they affect the output.

5_3_1: Viewing the tree structure
As we have seen in the data matching, different data structures of the same set of elements
produce different results. Grasshopper offers three ways to view the data structure, the Parameter
Viewer in text or diagram format, and the Panel.

Figure (65): View trees using the Parameter Viewer and the Panel components

Tree information can be extracted using the TStats component. You can extract the list of paths to
all branches, number of elements in each branch and the number of branches.

Figure (66): Extract trees structure using TStats component

3_5_2: List operations on trees
Trees can be thought of as a list of branches. When using list operations on trees, each branch is
treated as a separate list and the operation is applied to each branch independently. It is tricky to
predict the resulting data structure and therefore it is always important to check your input and
output structures before and after applying any operation.
To illustrate how list operations work in trees, we will use a simple tree, a grid of points, and apply
different list operations on it. We will then examine the output and its data structure.

63

Operations Example of how the list operation apply to trees

List Item
Select items at
specific index in
each branch

List Item
Select multiple
indices to isolate
part of the tree
and perform one
operation on such
as Mass
Addition

Split List
Split the elements
of branches into 2
trees at the
specified index

Shift List
Shifts the
elements of each
branch

64

Cull Pattern
Culls each branch

5_3_3: Grafting from lists to a trees
In some cases you need to turn a list into a tree where each element is placed in its own branch.
Grafting can handle complex trees with branches of variable depths.

Figure (67): Grafting a tree create a new branch for each element

It might feel unintuitive to complicate the data structure (from a simple list to a tree), but grafting is
very useful when trying to achieve certain matching. For example if you need to add each element
of one list with all the elements in the second list, then you will need to graft the first list before
inputting to the addition process.

65

Figure (68): Grafting complex trees

5_3_4: Flattening from trees to lists
Other times you might need to turn your tree structure into a simple list. This is achieved with
flattening process. Data from each branch is extracted and sequentially attached to one list.

Figure (69): Flattening place all tree elements in one list

Flatten also can handle any complex tree. It takes the branches in order starting with the lowest
index trunk and put all elements in one list.

66

Figure (70): Flattening complex trees

5_3_5: Combining data streams
It is possible to compose a number of lists into a tree where each list becomes a branch in a new
tree. It is different from the merging of lists where simply one bigger list is created.

Figure (71): Entwine and Merge components combine lists into trees or bigger lists

5_3_6: Flipping the data structure
It is logical in some cases to flip the tree to change the direction of branches.This is specially useful
in grids when points are organized in rows and columns (similar to a 2 dimensional array structure).
Flipping causes corresponding elements across branches (have same index in their branch) to be
grouped in one branch. For example, a data tree that has 2 branches and 4 items in each branch,
can be flipped into a tree with 4 branches and 2 elements in each branch.

67

Figure (72): Flip helps reorganize data trees

If the number of elements in the branches are variable in length, some of the branches in the
flipped tree will have “null” values.

Figure (73): Add “null” when flipping trees with variable length branches

Flipping is one of the operations that cannot handle variable depth branches, simply because there
is no logical solution to flip.

Figure (74): Flip fails when the input tree has variable depth branches

68

5_3_7: Simplifying the data structure
Processing data through multiple components can add unnecessary complexity to the data
structure. The most common form is adding leading or trailing zeros to the paths addresses.
Complex data structures are hard to match. Simplify Tree process helps remove empty branches.
There are other operations such as Clean Tree and Trim Tree to help remove null elements,
empty branches and reduce complexity. It is also possible to extract all branches as separate lists
using Explode Tree operation.

Figure (75): Paths can increase in complexity as more operations are applied to the data. Simplify helps remove empty
branches

5_3_8 Basic tree operations tutorial #1
Given one curve on XY-Plane, create horizontal and vertical louvers as in the image

Solution

Input curve
Data structure: single item (one
branch and one item in the branch)

Divide curve to extract points.
Data structure: list (one branch with
11 items). Note that the path has
added leading “0”. This indicates the
next layer of calculation.

69

Create vertical lines at each point.
Data structure: list (one branch with
11 items). Note that the path did not
increase in complexity.

Divide vertical lines to create a grid
of points.
Data structure: Tree (11 branches
with 6 items). Note that the path has
added leading “0”.

Create horizontal lines at each
point.
Data structure:Tree (11 branches
with 6 items). Note that the path did
not increase in complexity.

Create lofted surfaces through
branches of lines.
Data structure:Tree (11 branches
with 1 item each). Note that the path
did not increase in complexity.

Flip the tree matrix and then create
lofted surfaces through branches of
lines.
Data structure:Tree (11 branches
with 1 item each). Note that the path
did not increase in complexity.

You can flatten the tree to create
one list of horizontal louvers.

5_3_9 Simple tree operations tutorial #2
Given four corner points on a plane and a radius for the hinge, create a shutter that can open and shut as in the image
using a rotation parameter.

Algorithm analysis

70

For each shutter there are two parts:
the rectangle and the hinge.

Union the rectangle and hinge, then
allow rotating around the hinge.

There is one rotation control to move all
shutters together

Grasshopper implementation

Output
Surface of the shutters
Curves for the frame

Input
4 corner points (and center)
Hinge radius
Rotation parameter

Key processes

Create rectangle and hinges. Use
Rectangle

Union the curves. Use RUnion
Create a surface from the boundary.
Use Boundary component

71

Intermediate process #1

Rotate the rectangles using the angle.
Use Rotate component.

Intermediate process #2

Properly match the data structures of
the rectangles and hinges before the
region union.

Use Graft so that rectangles and hinges
pair correctly.

Put it all together

3_6: Advanced tree operations

As your solutions increases in complexity, so will your data structures. We will discuss three
advanced tree operations that are necessary to solve specific problems, or are used to simplify
your solution by tabbing directly into the power of the data tree structure.

3_6_1: Relative items
The first operation has to do with solving the general problem of connectivity between elements in
one tree or across multiple trees. Suppose you have a grid of points and you need to connect the

72

points diagonally. For each point, you connect to another in the +1 branch and +1 index. For
example a point in branch {0}, index [0], connects to the point in branch {1}, index [1].

Figure (76): Relative Item mask {+1}[+1] create positive diagonal connectivity

In Grasshopper, the way you communicate the offset is expressed with an offset string in the
format “{branch offset}[index offset]”. In our example, the string to connect points diagonally is “{+1}
[+1]”. Here is an example that uses relative tree component in Grasshopper. Notice that the relative
item component creates two new trees that correlate in the manner specified in the offset string.

Figure (77): Relative Item mask {+1}[+1] breaks the original tree into 2 new trees with diagonal connectivity

Here is an example implementation in Grasshopper where we define relative items in one tree,
then connect the two resulting trees with lines using the Relative Item component.

Figure (78): Relative Item with mask {+1}[+1] in Grasshopper

73

3_6_1_1 Relative item tutorial #1
Create the pattern shown in the image using a square grid of 7 branches where each branch has11 elements.

Solution

Define the {branch_offset} [index_offset]

Create the grid

Create relative trees that
connect each element with
-1 branch and +1 index: {-1}
[+1]

Create lines to connect the
2 relative trees.

74

Change the offset to {+2}
[+3] to create the second
connections

We showed how to define relative items in one tree, but you can also specify relative items
between 2 trees. You’ll need to pay attention to the data structure of the two input trees and make
sure they are compatible. For example, if you connect each point from the first tree with another
point from a different tree with the same index, but +1 branch, then you can set the offset string to
be {+1}[0].

Figure (79): Relative Items create connections across multiple trees

The input to the Relative Items component is two trees and the output is two trees with
corresponding items according to the offset string.

Figure (80): The offset mask of the Relative Items generates new trees with the desired connections

The following GH definition achieves the above:

75

Figure (81): Relative Items implementation in Grasshopper

3_6_1_2 Relative item tutorial #2
Use relative items between 2 bounding grids to generate the structure shown in the image.

Solution

Bottom tree connections

Cull every other index and keep the
same number of branches (cull inices 1,
3,...)

Define the offset strings for
RelativeItem components to create the
vertical and horizontal connections

Grasshopper definition

Top tree connections

76

Cull every other index and keep the
same number of branches. (cull inices
0, 2,...)

Define the offset strings for
RelativeItem components to create the
vertical and horizontal connections

Grasshopper definition

Connections between the 2 trees

Use culled grids, then define first offset
string for RelativeItems component to
create the first set of cross lines: {0}[0]

Define second offset string for
RelativeItems component to define the
second set of cross lines: {0}[-1]

3_6_2: Split trees
The ability to select a portion of a tree, or split into two parts is a very powerful tree operation in
Grasshopper. You can split the tree using a string mask that specifies the positive output of your
tree, and what’s left is called the negative tree and is given as an output. Since all trees are made
out of branches and indices, the split mask should include information about which branches and
indices within these branches to split. Here are the rules of the split mask

Split tree mask: syntax and general rules

{ ; ; } Use curly brackets to enclose the mask for the tree branches.

[] Use square brackets to enclose the mask for the elements (leaves), inside square
brackets. Can omit if select all items or use [*]

() Round brackets are used for organizing and grouping

* Any number of integers in a path. The asterisk also allows you to include all
branches, no matter what their paths look like

? Any single integer

77

6 Any specific integer

!6 Anything except a specific integer

(2,6,7) Any one of the specific integers in this group.

!(2,6,7) Anything except one of the integers in this group.

(2 to 20) Any integer in this range (including both 2 and 20).

!(2 to 20) Any integer outside of this range.

(0,2,...) Any integer part of this infinite sequence. Sequences have to be at least two integers
long, and every subsequent integer has to be bigger than the previous one (sorry,
that may be a temporary limitation, don't know yet).

(0,2,...,48) Any integer part of this finite sequence. You can optionally provide a single sequence
limit after the three dots.

!(3,5,...) Any integer not part of this infinite sequence. The sequence doesn't extend to the left,
only towards the right. So this rule would select the numbers 0, 1, 2, 4, 6, 8, 10, 12
and all remaining even numbers.

!(7,10,21,...,425) Any integer not part of this finite sequence.

{ * }[(0 to 4) or (6,11,41)] It is possible to combine two or more rules using the boolean and/or operators. The
example selects the first five items in every list of a tree and also the items 7, 12 and
42, then the selection rule

Here are some examples of valid split masks.

Split by branches

{ * } Select all (the whole tree output as positive, and negative tree will be empty)

{ *; 2 } Select the third branch

{ *; (0,1) } Select the first two end branches

{ *; (0, 2, …) } Select all even branches

Split by branches and leaves

{ * }[(1,3,...)] Select elements located at odd indices in all branches

{ *; 0 }[(1,3,...)] Select elements located at odd indices in the first branch

{ *; (0, 2) }[(1,3,...)] Select elements located at odd indices in the first and third branches

 {*; (0,2,...) } [(1,3,...)] Select elements located at odd indices in branches located at even indices

 {*; (0,2,...) } [(0) or (1,3,...)] Select elements located at odd indices, and index “0”, in branches located at even
indices

One of the common applications that uses split tree functionality is when you have a grid of points

78

that you like to transform a subset of it. When splitting, the structure of the original tree is
preserved, and the elements that are split out are replaced with null. Therefore, when applying
transformation to the split tree, it is easy to recombine back.
Suppose you have a grid with 7 branches and 11 elements in each branch, and you’d like to shift
elements between indices 1-3 and 7-9. You can use the split tree to help isolate the points you
need to move using the mask: {*}[(1,2,3) or (7,8,9)], move the positive tree, then recombine back
with the negative tree.

Figure (82): Split tree allows operating on a subset of the tree with the possibility to recombine back

This is the GH definition that does the above using the Split Tree component.

Figure (83): Split tree Grasshopper implementation of Figure (73)

One of the advantages of using Split Tree over relative trees is that the split mask is very versatile
and it is easier to isolate the desired portion of the tree. Also the data structure is preserved across
the negative and positive trees which makes it easy to recombine the elements of the tree after
processing the parts.

3_6_2_1 Split tree tutorial #1
Given a 6x9 grid, use the split tree to generate the following form.

79

Solution steps

Create the grid

Split the tree to isolate
the middle part

Split the middle part
into two new parts

Move the two middle
parts in opposite
directions then
recombine them

80

Recombine the middle
part with the rest of the
tree and create
polylines through each
branch elements

3_6_2_2 Split tree tutorial #2
Given a grid, create the following truss system using split tree functionality.

Solution

Create the 6x9 grid

Split at every other element

81

Move positive tree vertically

Combine positive and
negative trees
And create a polyline through
each branch elements

Create bottom curves using
negative tree

Create top curves using
positive tree

3_6_3: Path mapper
When dealing with complex data structures such as the Grasshopper data trees, you’ll find that you
need to simplify or rearrange your elements within the tree. There are a few components offered in
Grasshopper for that purpose such as Flatten, Graft or Flip. While very useful, these might not
suffice when operating on multiple trees or needing custom rearrangement. There is one very
powerful component in Grasshopper that helps with reorganizing elements in trees or change the
tree structure called the Path Mapper. It is perhaps the least intuitive to use and can cause a loss
of data, but it is also the only way to find a solution in some cases, and hence it pays to address
here.
The Path Mapper maps data between source and target paths. The source path is fixed, and is
given by the input tree. You can only set the target path. There is a set of constants that help with
the mapping. Here is a list of those.

item_count Number of items in the current branch

path_count Number of paths (branches) in the tree

path_index Index of the current path

82

Let’s start by familiarizing ourselves with the syntax using built-in mappings inside the Path
Mappers.

Figure (84): Path Mapper built-in mappings

In the following example, the input tree has two grids of points (2 trees). The data structure
becomes clear when using a Polyline which creates one polyline through each branch. We will
examine the effect of applying the built-in mapp on the structure and connection of points.

Built-in mappings inside the Path Mapper

Null Mapping Does not change anything.

Flatten
Mapping

83

Graft Mapping

Reverse
Mapping

Renumbering
Mapping

3_6_3_1 Path mapper tutorial #1
Given the tree structures of points, create the following connections.

84

Solution

The input has two trees, and each
has 5 branches with 11 elements
in each branch, a total of 10
branches.

A Polyline can be used to connect
the elements in each branch

To create the vertical connections, you need to create a branch for each 2 corresponding elements across the 2
trees, then use Polyline to connect them
1- Analyze the paths of the trees
2- Come up with a mapping that generates the desired grouping

First, group corresponding
branches across the 2 trees.

That can be achieved by switching
the last two integers in the paths:

Second, Flip each of the 5 trees.
Since the branches has 11
elements each, flipping each tree
will create 11 branches with 2
elements in each branch. Total of
55 branches.

You flip by switching the last
integer of the path with the
element index:

85

Finally, a Polyline makes the
vertical connections.

Note: You can combine the 2
mappings in one step as in the
following:

Combining is not always possible,
but it can save processing time
and size.

3_6_3_2 Path mapper tutorial #2
Given the input tree of points, create the following structure.

Solution

The initial tree
has 42
branches, 7
branches in
each of the 6
trees

86

The Polyline
component
connects the
elements in
each branch

Flip the trees
using Path
Mapper by
switching branch
and element
indices

Regroup the
elements of
corresponding
branches in all
trees using the
Path Mapper

87

Final result
Create all
connections

3_7: Advanced data structures tutorials
3_7_1: Sloped roof tutorial
Create a parametric truss system that changes gradually in height as shown in the image.

Algorithm analysis: First, solve for one simple truss

Identify desired output for a
single truss

Define initial input
1- Base line on XY-Plane
2- Number of runs
3- Height

Identify algorithms steps:

Create input (L=line,
H=height and R= #runs)

Divide curve by 2*R

88

Move every other point in
the Z direction by height

Create 3 sets of ordered
points for the bottom beams,
top beams and middle
beams, then connect each of
the 3 sets with a polyline

Implement the algorithm In Grasshopper

Resolve for multiple trusses with variable height

Create a series of base lines
using the initial line and copy
in Y-Axis direction

Use the list of lines as input
instead of a single line.

Notice that instead of a list of
points for each of the 3 sets
(bottom, top and middle), we
now have a tree or grid of
points with a number of
branches equal to the
number of trusses

89

Create cross connections
using Flip tree operation for
the bottom and top trees

Create variable height

The complete solution implementation in Grasshopper

90

3_7_2: Diagonal triangles tutorial
Given the input grid, use the RelativeItem component to create diagonal triangles

Solution

Algorithm analysis

To generate the triangles, we need 3
sets of corner points.

Two of the point sets (A, B) are within
the grid. B is diagonal from A (relative
index is +1 branch and +1 element)

The third point set (C) is a copy of set
(B) moved vertically.

Group corners to connect into
boundaries then generate surfaces

Grasshopper implementation

Use RelativeItem to create set A and
set B (use “{+1}[+1] mask)

Move set B vertically.

Create a tree with 3 branches for sets
A, B and C.

Flip the tree to group corresponding
points.

Use Polyline and Boundary to
generate the surfaces.

91

3_7_3: Zigzag tutorial
Create the structure shown in the image using a base grid as input.

Algorithm analysis

Since the zigzags alternate directions, it
is best to split the grid into 2 parts,
positive and negative.

Find 3 sets of points in the positive tree
and order

Reverse the elements in the branches
of the negative tree, then find the 3 sets
of points and order

Merge back the 2 trees to create
geometry through points

Grasshopper implementation

Use the Split Tree component to
generate positive and negative trees for
both bottom and top grids. Use {0,2,...}
split mask.

Use RelativeItems2 to create A and B
trees, use {0}[+1] relative mask.

Use Shift to create the C tree.

Weave data together and remove
duplicates.

Merge ordered positive and negative
trees to generate geometry using
Polyline and Pipe components.

92

3_7_4: Weaving tutorial
Create flat weaved threads using a rectangular grid as an initial input. Set your desired density and
size. Bonus: Make the weaving go along any surface

Algorithm analysis

The input is a planar square grid with
vertical branches. For vertical threads:

Split the grid into two parts alternating
elements in each branch.

Move the first part up, and the second
down, then recombine the parts into
one set

Draw a curve through the points in each
branch.

Flip the grid, then repeat to create
horizontal curves

Grasshopper implementation

Use Split tree to separate alternating
points and move up and down

Combine points and use IntCrv to
interpolate through points of each
branch

Flip the tree, and repeat Split,
Combine and IntCrv to create curves
in the other direction

The full Grasshopper solution

93

Bonus solution

Instead of using the Z-Axis to move points up and down, use the surface normal direction at each point
Note: Make sure the data structure of normals and points match

94

